Sinussatz und Flächeninhalt

Beachte: Stelle deinen GTR auf DEG über [SETUP] \rightarrow B \rightarrow Deg

In <u>jedem</u> Dreieck stehen die Längen der Seiten im Verhältnis zu den Winkeln. So kann man mit entsprechenden Angaben fehlende Seiten oder Winkel berechnen.

Sinussatz

In jedem beliebigen Dreieck gilt:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}; \quad \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}; \quad \frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$$

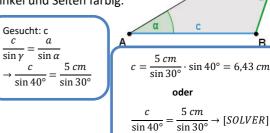
Dabei liegt die Seite a gegenüber des Winkels α (b gegenüber β und c gegenüber γ) Der Sinussatz wird immer dann benötigt, wenn mit zwei Seiten und zwei Winkeln gerechnet wird.

Bsp.:
$$a = 5 cm$$
; $c = ?$; $\alpha = 30^{\circ}$; $\gamma = 40^{\circ}$

- 1. Zeichne eine Skizze und markiere die gegebenen/gesuchten Winkel und Seiten farbig.
- 2. Starte mit der gesuchten Seite.
- 3. Teile durch den Sinus des gegenüberliegenden Winkels.
- 4. Setze gleich mit den beiden anderen bekannten Größen. Pass auf, dass du die Form $\frac{Seite}{\sin \alpha} = \frac{Seite}{\sin \alpha}$ hast.
- 5. Löse die Gleichung über
 - a. Umformung

oder

b. [SOLVER]



Berechnen eines Winkels

Bsp.:
$$b = 4.5 cm$$
; $c = 8.2$; $\beta = ?$; $\gamma = 53^{\circ}$

- 1. Zeichne eine Skizze und markiere die gegebenen/gesuchten Winkel und Seiten farbig.
- 2. Starte mit dem Sinus des gesuchten Winkels.
- 3. Teile durch die gegenüberliegende Seite.
- 4. Setze gleich mit den beiden anderen bekannten Größen. Pass auf, dass du die Form $\frac{\sin \alpha}{Seite} = \frac{\sin \alpha}{Seite}$ hast.
- 5. Löse die Gleichung über
 - a. Umformung

oder

b. [SOLVER]

Beachte: Gilt der Kongruenzsatz SsW (FS S.30) nicht, kann es keine/zwei Lösungen geben.

inkel und Seiten farbig. Gesucht: β $\frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$ $\frac{\sin \beta}{4,5 \ cm} = \frac{\sin 53^{\circ}}{8,2 \ cm}$ $\beta = \sin^{-1} \left(\frac{\sin 53^{\circ}}{8,2} \cdot 4,5\right) = 25,99^{\circ}$ oder $\frac{\sin \beta}{4,5 \ cm} = \frac{\sin 53^{\circ}}{8,2 \ cm} \rightarrow [SOLVER]$ $\Rightarrow \beta = 25,99^{\circ}$

 $\rightarrow c = 6.43 \ cm$

Flächeninhalt eines Dreiecks über den Sinus

Der Flächeninhalt jedes Dreiecks lässt sich über einen Winkel und den an den Winkel anliegenden

Seiten berechnen. Es gilt: $A = 0.5 \cdot b \cdot c \cdot \sin \alpha$

(bzw.:
$$A = 0.5 \cdot a \cdot c \cdot \sin \beta$$
 oder $A = 0.5 \cdot a \cdot b \cdot \sin \gamma$)

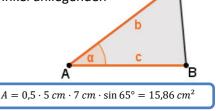
Bsp.: A = ?; a = 5 cm; b = 7 cm; $y = 65^{\circ}$

- 1. Überprüfe, ob der Winkel und seine anliegenden Seiten bekannt sind.
- 2. Stelle die entsprechende Gleichung auf.
- 3. Löse die Gleichung.

Anmerkung: Ist der Flächeninhalt gegeben, so kann man dadurch eine fehlende Seite oder einen fehlenden Winkel berechnen. Setze alle Größen in die Gleichung ein und löse durch Umformung oder [SOLVER].

Tipps:

- Die Innenwinkelsumme im Dreieck ist 180°. Damit lassen sich einfach Winkelmaße berechnen.
- Strecken und Winkel lassen sich auch mit Punkten angeben (Winkel entgegen des Uhrzeigersinns)
 - $\circ \qquad \mathsf{Strecken:} \ \overline{AB}; \ \overline{AC}; \ \overline{BC}; \dots$
 - Winkel: $\angle BAC$ (= α); $\angle CBA$ (= β); $\angle ACB$ (= γ); ...

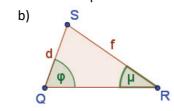


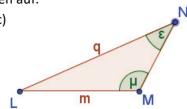
Denke daran, dass im Dreieck die Namen der Seiten und Winkel eine andere Reihenfolge haben wie im Vieleck.

Aufgaben: Runde wenn nicht anders angegeben auf zwei Nachkommstellen.

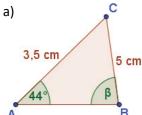
1. Stelle für folgende Dreiecke mit dem Sinussatz passende Gleichungen auf.

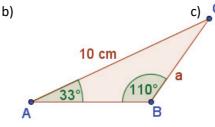
a) C Y a

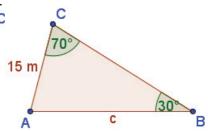




2. Berechne die angegebene Seite oder den angegebenen Winkel.







3. Skizziere das Dreieck ABC und berechne die fehlenden Größen.

a)
$$a = 4 \ cm$$
; $b = 7 \ cm$; $\beta = 50^{\circ}$; $\alpha = ?$

b)
$$c = 4.2 \text{ cm}$$
; $\gamma = 60^{\circ}$; $\beta = 82^{\circ}$; $b = ?$

c)
$$\alpha = 6 \ cm$$
; $\alpha = 33^{\circ}$; $\gamma = 43^{\circ}$; $c = ?$

d)
$$b = 7 cm$$
; $\beta = 60^{\circ}$; $\alpha = 50^{\circ}$; $c = ?$

e)
$$\overline{AB} = 7 \text{ cm}$$
; $\overline{BC} = 5 \text{ cm}$; $\angle ACB = 70^{\circ}$; $\angle BAC = ?$

f)
$$\overline{AC} = 4.5 \text{ cm}$$
; $\angle CBA = 40^\circ$; $\angle ACB = 90^\circ$; $\overline{AB} = ?$

g)
$$\overline{BC} = 6 \text{ cm}$$
; $\angle CBA = 80^\circ$; $\angle ACB = 45^\circ$; $\overline{AC} = ?$

4. Berechne den Flächeninhalt A der Dreiecke mit folgenden Angaben.

a)
$$a = 4 \text{ cm}$$
; $b = 8 \text{ cm}$; $\gamma = 50^{\circ}$

b)
$$a = 4 cm$$
; $c = 3 cm$; $\beta = 70^{\circ}$

c)
$$b = 7 cm$$
; $c = 4.1 cm$; $\alpha = 110^{\circ}$

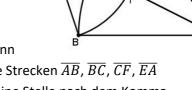
d)
$$\alpha = 30^{\circ}$$
; $\beta = 53^{\circ}$; $b = 5.5 cm$

5. Die nebenstehende Skizze zeigt das Drachenviereck ABCD mit der Symmetrieachse AC.

Es gilt:
$$\overline{BC} = 9 \text{ cm}$$
; $\angle DCB = 40^{\circ}$; $\angle CBA = 110^{\circ}$.

Der Kreisbogen \widehat{DFB} hat den Mittelpunkt A und schneidet die Strecke [AC] im Punkt F. Der Kreisbogen \widehat{DEB} hat den Mittelpunkt C und schneidet die Strecke [AC] im Punkt E.

Berechnen Sie die Länge der Strecke [AB] und bestimmen Sie sodann



durch Rechnung den Flächeninhalt der Figur ABCFBE, die durch die Strecken \overline{AB} , \overline{BC} , \overline{CF} , \overline{EA} und die Kreisbögen \overline{DEB} und \overline{DFB} begrenzt wird. Runden Sie auf eine Stelle nach dem Komma.

[Teilergebnis: $\overline{AB} = 4.0 \ cm$]

29)
$$\beta = 29,10^{\circ}$$
; b) $\delta = 5,80$ cm; c) $\delta = 28,19$ cm
49) $\delta = 25,96^{\circ}$; b) $\delta = 5,80$ cm; c) $\delta = 7,51$ cm; d) $\delta = 7,60$ cm; e) $\delta = 7,00$ cm; g) $\delta = 7,00$ cm; g)

$$\frac{n}{\sin s} = \frac{\mu}{\mu \operatorname{ris}} (3; \frac{1}{4} + \frac{1$$